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Abstract. In this paper, we study the spin and energy dynamic correlations of the
one-dimensional spin-1

2 Heisenberg model, using mostly exact diagonalization numerical
techniques. In particular, observing that the uniform spin and energy currents decay to finite
values at long times, we argue for the absence of spin and energy diffusion in the easy plane
anisotropic Heisenberg model.

1. Introduction

Recently there has been a renewed interest in the finite temperature dynamics of the
one-dimensional spin-1

2 Heisenberg model, especially on the question of diffusive spin
transport [1–4]. In particular, it was argued that the integrability of the model implies
pathological spin dynamics and presumably the absence of spin diffusion [5, 6]. The role
of conservation laws was pointed out in [7], where it was shown that in several quantum
integrable models the uniform (q = 0) current correlations do not decay to zero at long
times. This result, established using the Mazur inequality [8], suggests pathological finite
temperature dynamics.

As far as the Heisenberg model is concerned, the analysis of conservation laws
has shown that the energy current operator commutes with the Hamiltonian, suggesting
anomalous finite-(q, ω) energy density correlations. However, for zero magnetic field,
this method turned out to be inadequate for describing the decay of the uniform spin
current correlations. This case is closely related to the behaviour of the finite temperature
conductivity in the one-dimensional model of spinless fermions at half-filling interacting
with a nearest neighbour interaction (the ‘t–V’ model [7]).

In this work, we address the issues raised above by the numerical diagonalization of the
Hamiltonian matrix on finite size lattices. More precisely, we study the implications of the
energy current conservation on the (q, ω) energy density correlations, and as an alternative
route to the analysis of spin diffusion, we investigate the decay of the uniform (q = 0) spin
current correlations.

The letter is organized as follows: in section 2, we recall the Heisenberg Hamiltonian
and define the various quantities studied below. In section 3 we briefly summarize the
phenomenological picture of diffusion. There, we also argue that the decay of the uniform
spin current correlations to a finite value is incompatible with a diffusive behaviour,
assumingcontinuity in the wave vectorq of the correlations atq = 0. Next, we test
these ideas in section 4 in theXY limit, where results can be obtained analytically. Turning
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to the numerical results, in section 5.1 we present the energy density correlations at infinite
temperature for the case of the isotropic Heisenberg model. A simple ansatz for the
observed behaviour suggests a logarithmic dependence at low frequencies for the energy
autocorrelation function. As far as the spin dynamics are concerned, numerous studies of the
(q, ω) spin density correlations exist [1–3]. Therefore, in section 5.2, we restrict ourselves
to the decay of the uniform spin current correlations for various temperatures and values of
the anisotropy parameter1. Interestingly, it turns out that these do not decay to zero for
1 < 1. According to the argument given in section 3, this result implies non-diffusive spin
transport. Section 6 contains a short discussion on experimental relevance of these findings
and open questions.

2. The model

The anisotropic Heisenberg Hamiltonian for a chain ofL sites with periodic boundary
conditions is given by

H =
L∑
l=1

hl = J
L∑
l=1

(Sxl S
x
l+1+ Syl Syl+1+1Szl Szl+1) (1)

whereSαl = 1
2σ

α
l , σαl are the Pauli spin operators with componentsα = x, y, z at sitel.

For a conserved quantityA =∑L
l=1 al , [A,H ] = 0, the continuity equation inq-space

defines the currentjq :

∂aq(t)

∂t
= 2i sin(q/2)jq (2)

with

aq = 1√
L

L∑
l=1

eiqlal jq = 1√
L

L∑
l=1

eiqljl (3)

andaq(t) = eiHtaqe−iHt .
Settingal = Szl , hl we find the following spin and energy currents respectively

jzl = J (Syl Sxl+1− Sxl Syl+1) (4)

jHl = J 2(Sxl−1S
z
l S

y

l+1− Syl−1S
z
l S

x
l+1)+ J 21(S

y

l−1S
x
l S

z
l+1− Szl−1S

x
l S

y

l+1)

+J 21(Szl−1S
y

l S
x
l+1− Sxl−1S

y

l S
z
l+1). (5)

For the discussion of dynamic correlations at finite temperatures, we chose to analyse the
anticommutator form

SAA(q, t − t ′) = 1
2〈{aq(t), a−q(t ′)}〉 (6)

where 〈 〉 is the thermal average at temperatureT = 1/β over a complete set of states.
Further, the frequency dependent correlation function defined by

SAA(q, ω) =
∫ +∞
−∞

dωeiωtSAA(q, t) (7)

is symmetric in frequency,SAA(q, ω) = SAA(q,−ω).
A central point in our approach is the relation between the dynamic correlations of

a quantity A and its corresponding current correlations, which we obtain by using the
continuity equation (2):

ω2SAA(q, ω) = 4 sin2(q/2)SjAjA(q, ω). (8)
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In particular, we will discuss the asymptotic value of the current correlations

CjAjA = lim
t→∞

SjAjA(q = 0, t)

SjAjA(q = 0, t = 0)
. (9)

A finite value ofCjAjA translates to aδ(ω) peak inSjAjA(q = 0, ω) and as we will discuss
below, implies restrictions in the behaviour ofSAA(q, ω).

An important observation is that the energy currentjH of the Heisenberg model
commutes with the Hamiltonian [7], so thatCjH jH = 1, whereas the spin current does
not. However, it will turn out thatCjzjz > 0 for 1 < 1, meaning that the spin current and
energy current correlations are similar in the sense that in their frequency representation,
they both exhibit a finite weightδ(ω) function.

3. Diffusive behaviour

When we consider the(q, ω)-dependent correlations of a conserved quantityA such as the
magnetization, it is usually assumed, largely on phenomenological grounds, that they exhibit
a diffusive behaviour in the long-time|t − t ′| → ∞, short wavelengthq → 0 regime [9]:

SAA(q, t − t ′) ∼ e−DAq
2|t−t ′| (10)

whereDA is the corresponding diffusion constant, or

SAA(q, ω) ∼ 2DAq
2

(DAq2)2+ ω2
(11)

for ω→ 0.
This Lorentzian form correctly reduces to aδ(ω) function in the limitq → 0, as implied

by [A,H ] = 0. Further, using the continuity equation (8) forq → 0, we obtain

SjAjA(q, ω) ∼ 2DAω
2

(DAq2)2+ ω2
(12)

which gives the diffusion constantDA when first, the limitq → 0 and then,ω → 0 are
taken. On the other hand, if the current correlations forq = 0 do not decay to zero at long
times,CjAjA > 0 andSjAjA(q, ω) has a finite weightδ(ω) component which is incompatible
with the diffusive form (12). In this reasoning, we must assume a regular behaviour of the
correlation functions in theq variable.

To summarize the argument, if a quantityA is conserved ([A,H ] = 0) and its current
jA is either conserved ([jA,H ] = 0), orCjAjA > 0, then continuity inq at q = 0 excludes
a diffusive form (10) for the corresponding correlationSAA(q, t − t ′).

4. XY limit

A simple model for testing these ideas is theXY limit (1 = 0), of the Heisenberg model. In
this case, both the energy currentjH and the spin currentjz commute with the Hamiltonian.
The model can be mapped to a free spinless fermion model by using a Jordan–Wigner
transformation which allows us also to evaluate explicitly the spin and energy dynamic
correlations atβ = 0. In the spin case, these are well known results [10]:

SSzSz (q, ω) = 1

2(4J 2 sin2(q/2)− ω2)1/2
θ(|2J sin(q/2)| − |ω|) (13)

SHH (q, ω) = (4J 2 sin2(q/2)− ω2)1/2

8 sin2(q/2)
θ(|2J sin(q/2)| − |ω|). (14)
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These forms are indeed consistent with the conservation of both spin (energy) and spin
current (energy current) as they reduce to aδ(ω) function when the limitsq → 0, ω→ 0
are taken. Further, the time decay of the autocorrelations atβ = 0 is not of the form 1/

√
t ,

as predicted by the diffusion hypothesis. Indeed,

〈Szl (t)Szl 〉 =
1

4
J 2

0 (J t) (15)

〈hl(t)hl〉 = J 2

8

(
J 2

0 (J t)+ J 2
1 (J t)

)
(16)

which both behave as 1/t for t →∞.

5. Anisotropic Heisenberg model

5.1. Energy correlations

As we mentioned earlier, the energy currentjH associated with the anisotropic Heisenberg
model (1) commutes with the Hamiltonian for all values of the parameter1. Therefore, the
time correlations do not decay at all (CjH jH = 1) and according to the argument explained
in section 3, no diffusive energy transport occurs. However, the conservation ofjH does
not provide us with any details about the shape ofSHH (q, ω) at finite q. In the absence
of an analytical solution, we investigate this quantity by numerical diagonalization of the
Hamiltonian matrix on a ring of 16 sites.

In figure 1, we showSHH (q, ω) for 1 = 1, which is experimenally the most interesting
point as it describes isotropic quasi one-dimensional antiferromagnets. We study the high
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Figure 1. Energy density correlation functionSHH (q, ω) at β = 0 for 1 = 1, q = (2π/16)n,
n = 1, . . . ,4. The inset shows the normalized, integrated quantityIHH (q, ω) for 1 = 1, J2 = 0
andJ2 = 0.2J .
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temperature limitβ = 0, which is the most convenient for a numerical study as it involves
the full excitation spectrum, but is also relevant experimentally for spin systems as the
magnitude ofJ can be of the order ofT . The plot is represented as histograms of width
0.06ω/J . The inset shows the normalized, integrated (prior to summing nearby frequencies)
quantity

IHH (q, ω) =
∫ ω

0+ dω′SHH (q, ω′)∫∞
0+ dω′SHH (q, ω′)

(17)

which has the advantage of smoothing out the finite size discontinuities. To point out the
practically linear integrated behaviour of the pure Heisenberg model, we also show the same
quantity for a more generic case obtained by adding a next-next neighbour (non-integrable)
interactionJ2.

The simplest way to describe this behaviour is by means of ‘plateaus’ given by the
ansatz:

SHH (q, ω) =
√

3πJ

16
√

1− cos(q)
θ(|ω| − J

√
3(1− cos(q))) (18)

which satisfy the first
∫

dω SHH (q, ω) = 3πJ 2/8 and the second
∫

dωω2SHH (q, ω) =
3πJ 4(1− cos(q))/8 exact moments forβ = 0. Further, this ansatz is compatible with
the limit SHH (q → 0, ω) → δ(ω) as implied by the conservation of energy. Using the
continuity equation (8), we obtain for smallq andω

SjH jH (q, ω) =
√

6πJ

16

ω2

q3
θ(|ω| −

√
3

2
J |q|) (19)

which correctly reduces to aδ(ω)-function for q → 0, in agreement with the conservation
of the energy current [jH ,H ] = 0.

Using this ansatz we find for the energy autocorrelation function (obtained by integration
over q) ∫ +∞

−∞
〈hl(t)hl〉 eiωt dt = C0− C1 ln(ω/J )+O(ω2) C0, C1 > 0 (20)

a logarithmic behaviour at low frequencies, in contrast to the diffusion form 1/
√
ω.

We should stress that these results are onlyindicative, as they are obtained from
small size lattices which can provide reliable information only for correspondingly high
frequencies and large wave vectors. Nevertheless, the consistency of these results with the
arguments presented above against a diffusion form are encouraging.

5.2. Spin correlations

The spin density dynamic correlationsSSzSz (q, ω) have been the subject of many studies
which have not been able to answer the question of spin diffusion unambiguously. Here, we
revisit this problem by investigating the compatibility between spin density and spin current
correlations, which requires that we calculateCjzjz . In contrast to the energy current, the
spin currentjz does not commute with the Hamiltonian, so thatSjzjz (q = 0, ω) is different
from a pureδ(ω) function. Nevertheless, ifCjzjz > 0, which means thatSjzjz (q = 0, ω)
has a finite weightδ-function atω = 0, our previous arguments against diffusion still hold.

In determiningCjzjz , we noticed a peculiar difference in the low frequency behaviour
of Sjzjz (q = 0, ω) depending on the anisotropy parameter1. In figure 2, we show

Ijzjz (ω) = Cjzjz + 2
∫ ω

0+
dω′Sjzjz (q = 0, ω′) (21)
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Figure 2. Integratedq = 0 energy current correlationsIjzjz (ω) for N = 16, β = 0 and
1 = 0.45, 0.5 and 0.55. The inset displaysIjzjz (ω) for L = 12, 14, 16, 18 at inverse temperature
β = 0 and1 = 0.2.

the corresponding integrated, normalized quantity. We see that for1 = cos(π/n),
n = 3, 4, . . . (n = 3 in the figure) all the low frequency weight ofSjzjz (q = 0, ω) is
concentrated in theδ-function atω = 0. In contrast, for neighbouring values such as
1 = 0.45 or 0.55, we observe a shift of weight to a low frequency region whose size
decreases as the system grows (inset) and eventually vanishes asL→∞. We believe that
the behaviour of these special1 points is related to the existence of finite length strings
(bound states) as they appear in the formulation of the thermodynamics of the Heisenberg
model, within the Bethe ansatz method [11]. It seems that in order to determineCjzjz

from finite size systems for1 6= cos(π/n), we should include the weight from these low
frequency regions. As an example, doing so for1 = 0.45 gives us a value ofCjzjz = 0.66
for L = 16 (figure 2). Having discussed this technical issue, we can then determine
Cjzjz for different size systems, as a function of temperature and1. By extrapolating our
finite size results to the thermodynamic limit using second order polynomials in 1/L for
L = 8, . . . ,18, we obtain the results shown in figure 3. Their striking feature is that for
T > J , Cjzjz is finite in the1 < 1 region, and practically zero when1 > 1. In this regime,
according to our previous argument, we expect a non-diffusive behaviour.

Describing the behaviour ofCjzjz for 1 > 1 at finite temperatures is rather subtle.
The reason is that in the Heisenberg model,1 = 1 corresponds to a point of change of
symmetry, from easy plane to easy axis, accompanied by the opening of a gap. In the
fermionic version of the model, the ‘t–V’ model, it corresponds to a metal–insulator Mott–
Hubbard type transition, with the charge stiffness changing discontinuously [12] at zero
temperature. We should note that this discontinuity is difficult to reproduce by numerical
simulations on small finite size lattices, as the transition corresponds to the divergence of
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Figure 3. Values ofCjzjz as function of1 and β obtained by extrapolating second order
polynomials in 1/L from results on systems of sizesL = 8, . . . ,18. Calculations were done for
1 = cos(π/n), n = 3, 4, 5, 6, 7, 10 and1 = 1.0, 1.1, 1.5.

the localization length. Considering that at high temperature,Cjzjz behaves similarly to the
charge stiffness in the ‘t–V’ model [7] we understand why it is difficult to decide whether
Cjzjz is greater than zero in the region1 & 1 andT <∞. For the same reason, we cannot
exclude thatCjzjz behaves discontinuously at1 = 1. Nevertheless, it seems unambiguous
thatCjzjz ' 0 for 1 > 1.5 andT > J .

6. Discussion

The results presented are of interest in recent experimental studies [13] of spin dynamics in
quasi-one-dimensional materials such as CuGeO3 and Sr2CuO3. Particular attention should
be paid to the unusually high value of the diffusion constant found in NMR experiments
on Sr2CuO3 [13], perhaps related to the integrability of the Heisenberg model as discussed
above. Furthermore, our results on the behaviour of energy density correlations are of
interest in the interpretation of the quasi-elastic Raman scattering, related to magnetic energy
fluctuations [14, 15]. We should emphasize that no diffusion form should be expected for the
energy density correlations in the isotropic Heisenberg model with only nearest neighbour
interaction. An eventual diffusive behaviour should be attributed to next-nearest neighbour
coupling, interaction with phonons or deviations from one dimensionality. Finally, the
main unresolved issue in this work is a better understanding of the finite temperature spin
dynamics at the isotropic point.
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